7-7 Practice Base e and Natural Logarithms

Write an equivalent exponential or logarithmic equation.

1. $\ln 50 = x$	2. $\ln 36 = 2x$	3. $\ln 6 \approx 1.7918$	4. $\ln 9.3 \approx 2.2300$
5. $e^x = 8$	6. $e^5 = 10x$	7. $e^{-x} = 4$	8. $e^2 = x + 1$
Solve each equation or inequality. Round to four decimal places.			
9. $e^{x} < 9$	10. $e^{-x} = 31$	11. $e^x = 1.1$	12. $e^x = 5.8$
13. $2e^x - 3 = 1$	14. $5e^x + 1 \ge 7$	15. $4 + e^x = 19$	16. $-3e^x + 10 < 8$
17. $e^{3x} = 8$	18. $e^{-4x} = 5$	19. $e^{0.5x} = 6$	20. $2e^{5x} = 24$
21. $e^{2x} + 1 = 55$	22. $e^{3x} - 5 = 32$	23. 9 + $e^{2x} = 10$	24. $e^{-3x} + 7 \ge 15$
21. $e^{-1} + 1 = 35$	22. $e^{-1} - 5 = 52$	23. $9 + e^{-1} = 10$	24. e ^{−−−} + / ≥ 15
25. $\ln 4x = 3$	26. $\ln(-2x) = 7$	27. ln $2.5x = 10$	28. $\ln(x-6) = 1$
29. $\ln(x+2) = 3$	30. $\ln(x+3) = 5$	31. $\ln 3x + \ln 2x = 9$	32. $\ln 5x + \ln x = 7$

- 33. INVESTING Sarita deposits \$1000 in an account paying 3.4% annual interest compounded continuously. Use the formula for continuously compounded interest, $A = Pe^{rt}$, where P is the principal, r is the annual interest rate, and t is the time in years.
 - a. What is the balance in Sarita's account after 5 years?

b. How long will it take the balance in Sarita's account to reach \$2000?

34. RADIOACTIVE DECAY The amount of a radioactive substance y that remains after t years is given by the equation $y = ae^{kt}$, where a is the initial amount present and k is the decay constant for the radioactive substance. If a = 100, y = 50, and k = -0.035, find t.